On this page
Reference
Big Integers
Laminas\Math\BigInteger\BigInteger
offers a class to manage arbitrary length
integers. PHP supports integer numbers with a maximum value of PHP_INT_MAX
, a
value defined by your processor architecture and available memory. If you need
to manage integers bigger than PHP_INT_MAX
, you need to use external libraries
or PHP extensions such as GMP or BC Math.
Laminas\Math\BigInteger\BigInteger
is able to manage big integers using either
the GMP or the BC Math extensions as adapters.
Methods available
The mathematical functions implemented in Laminas\Math\BigInteger\BigInteger
are:
add($leftOperand, $rightOperand)
: add two big integers.sub($leftOperand, $rightOperand)
: subtract two big integers.mul($leftOperand, $rightOperand)
: multiply two big integers.div($leftOperand, $rightOperand)
: divide two big integers (this method returns only the integer part of result).pow($operand, $exp)
: raise one big integer using the other big integer as the exponent.sqrt($operand)
: get the square root of a big integer.abs($operand)
: get the absolute value of a big integer.mod($leftOperand, $modulus)
: get the modulus of dividing one big integer by another.powmod($leftOperand, $rightOperand, $modulus)
: raise a big integer using another big integer as the exponent, and reduce by the specified modulus.comp($leftOperand, $rightOperand)
: compare two big integers. Returns < 0 if$leftOperand
is less than$rightOperand
; > 0 if$leftOperand
is greater than$rightOperand
; and 0 if they are equal.intToBin($int, $twoc = false)
: convert a big integer into its binary number representation;binToInt($bytes, $twoc = false)
: convert a binary number into a big integer.baseConvert($operand, $fromBase, $toBase = 10)
: convert a big integer between arbitrary bases.
Examples
The example below illustrates using the BC Math adapter to calculate the sum of two random integers with 100 digits each.
use Laminas\Math\BigInteger\BigInteger;
use Laminas\Math\Rand;
$bigInt = BigInteger::factory('bcmath');
$x = Rand::getString(100, '0123456789');
$y = Rand::getString(100, '0123456789');
$sum = $bigInt->add($x, $y);
$len = strlen($sum);
printf("%{$len}s +\n%{$len}s =\n%s\n%s\n", $x, $y, str_repeat('-', $len), $sum);
Note that the big integers are managed using strings; even the result of the sum is represented as a string.
Next is an example using the BC Math adapter to generate the binary representation of a negative big integer containing 100 digits.
use Laminas\Math\BigInteger\BigInteger;
use Laminas\Math\Rand;
$bigInt = BigInteger::factory('bcmath');
$digits = 100;
$x = '-' . Rand::getString($digits, '0123456789');
$byte = $bigInt->intToBin($x);
printf(
"The binary representation of a big integer with %d digits:\n%s\nis (in Base64 format): %s\n",
$digits
$x,
base64_encode($byte)
);
printf("Length in bytes: %d\n", strlen($byte));
$byte = $bigInt->intToBin($x, true);
printf(
"The two's complement binary representation of the big integer with %d digits:\n"
. "%s\nis (in Base64 format): %s\n",
$digits,
$x,
base64_encode($byte)
);
printf("Length in bytes: %d\n", strlen($byte));
The above generates the binary representation of the big integer number using the
default binary format, and the two's complement
representation (specified with the true
parameter in the intToBin
function).